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INFLUENCE OF TEMPERATURE FIELD ON STABILITY OF FLUID MOTION

BETWEEN ROTATING CYLINDERS
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The Rayleigh method is used to obtain relations giving the influence
of the amount and direction of heat flow on the stability of a fluid
between rotating cylinders.

One of the main peculiarities of fluid flows subjected
to inertia force fields is the excitation of secondary
flows which radically alter the nature of the flow,
the heat transfer conditions, and the flow friction,
Secondary flows result from nonuniformity of the
body forces field in the system. The body force,
referred to unit volume, may be expressed in terms
of an inertial acceleration j and fluid density p:

F=jp.

Therefore, secondary flows may appear only in
systems in which j or p change.

Depending on the nature of the change in body
forces in a system, it may promote flow stabilization
or destabilization. For example, in the flow of a
fluid over a horizontal surface, the body forces due
to the Earth's gravitational field stabilize the flow
when the body force and its gradient have the same
direction, and, conversely, have a destabilizing in-
fluence when these vector quantities have opposite
directions.

Taylor [1] analyzed the stability of motion of a
fluid between rotating cylinders under isothermal
conditions by a perturbation method, and obtained
good agreement between theory and experiment. An
attempt was made in [2] to extend the small per-
turbation method to nonisothermal conditions. The
authors limited attention to the case of a motionless
outer cylinder, assumed a linear temperature dis-
tribution with radius, and represented the results
of the theoretical investigation by the formula

Ta 1 -1
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We shall analyze the stability of motion of a fluid
between rotating cylinders under isothermal con-
ditions by the Rayleigh method, described in [3].

In this method no account is taken of the influence
of viscosity on the nature of the motion of randomly
moving fluid particles, and therefore the moment of
momentum of the particles is taken to be constant
in this kind of motion.

If volume Av of fluid with density p is displaced
from radius ryto r > ry, the centrifugal force acting
on it will be

Fo- -Mg/AU.”n"3, 2)

and the force determining the pressure gradient and
holding the rotating fluid in equilibrium at the new
radius is

F=M*Avprd. 3)

Here p (ur)2 is the moment of momentum.
The stability condition may therefore be written
as

M2/p — Mio/po >0
0 (ur)® — po (ugre)® >0. (4)
By expanding the function p(ur)? in a Taylor series
in positive differences r — r;, and limiting it to two

terms of the expansion, we find that the stability
condition may be written as
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It may be seen from this formula that for a posi-
tive density gradient (temperature decrease with
radius), the nonisothermal feature increases the
stability of the motion, while for a negative gradient
it promotes flow destabilization.

We shall use (6) to analyze the stability of a fluid
located between rotating cylinders in the presence of
radial heat flow. In the absence of axial displace-
ment and with fluid viscosity independent of temp-
erature, the radial distribution of peripheral velocity
is given by [4]

4 = @ (Ar 4 ri Bjn), (7)

where
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A= —a)Ts—1) B = (o 1) —1).

With the aid of (7), the first term of (6) is found
to be
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Here
C = B/A = (0 — 1)/irs — ).

The density change in the system may be evaluated
by means of the volumetric expansion 8, For the
positive and negative heat fluxes we shall assume the
following dependences of p = f (f):

p = pa/l1-+ Bt — L)L ()
p=p/l-B(E—tI (10)
Confining our examination to small gaps between

the cylinders, we shall use a linear relation between
temperature and radius

t==a- br. (11)
Formulas (9), (10), and (11) allow determination

of the second term of (6), Whenq > 0 andq < 0 we
obfain

{ dp 1 K
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p dr 1, H—K(_i~—7) (13)
Ty

Here X is a dimensionless group characterizing
the magnitude and direction of the heat load:

Kz——ﬁrzbz——ﬁrg(j—ﬁ:% red. (14)

Therefore, in accordance with (6), the condition
for stable motion of the fluid takes the form:
when q > 0

4r K

-+ — >0 15
Fic T IrKa=n (15)
whenq < 0 ‘
A K o (16)
r +C V- K(lry—r)

By equating (15) and (16) to zero, we find the
critical relation for velocity w;", corresponding to
the limit of stability:

whenq > 0
o1 = (Rr} — KR — K), (17
whengq < 0
o) = (ST — K)(S —K). (18)
Here

R=4r(14 Ky—3r K, S -ar(l %—K,/Fg)._s‘rgK.

Increase of parameter w, is accompanied by
increase of the gradient of the body force in the
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direction of the axis of rotation, and promotes flow
destabilization, The motion will therefore be stable
if @y < wf.

For an isothermal flow regime (K = 0), formulas
(17) and (18) reduce to the well-known relation be-
tween ratio of angular velocities and cylinder radii
(31

— -

o, ~ 7. (19)

It may be seen from (17) and (18) that the critical
angular velocity ratio depends on the radius at which
the fluid motion is examined (Fig. 1a). As is seen
from the figure, positive heat flux, which creates
negative density gradient, enlarges the region of
stable regimes of motion, while negative heat flux
causes this region to contract,

When the heat fluxes are small, loss of stable
motion occurs simultaneously over the whole section
of the gap. When the absolute values of heat flux are
large, the liquid layers near the outer cylinder prove
to be the most stable, Therefore, by puttingr =1
in (17) and (18), we obtain the critical angular vel-
ocity ratio corresponding to loss of fluid motion
stability in the entire gap (Fig. 1b).

The change of flow stability due to thermal action
may be described by the ratio w;/w;;. For q > 0 and
T =1, we have, from (17) and (19)

T —2
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SR R 20)
4 PA

—*

O,

When comparing systems under isothermal and
nonisothermal conditions, the critical regimes may
be evaluated according to the value of angular vel-
ocity of the inner cylinder, for identical velocity of
the outer. Then (20) takes the form

o] 1, -l
=l K 21
g . = (21)

w

In contrast to (1), this equation describes the
influence of heat flux on stability of the fluid for any
angular velocity, whose value must be taken into
account when wj is defined.

Similary, forq < 0 and T = 1, we obtain

L i I—4r, ) re—1 \7!
o[ ko = (o B

ra Ty

Let us compare the results obtained with (1).
For an outer cylinder at rest we have

Ta/Tay (@/e] ). (23)

For r = 1, allowing for (21), we obtain

13:(1_;<_1 K 2=} ) (24)
Ta, 4 ry
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Fig. 1. a) Dependence of critical angular velocity

ratio w¥ or T whenry = 1.5 and b) on T, when 't =

= 1.0 for values of K equal to 100;10; 1; 0; -1;
-10; ~100 (1~7, respectively).

For convenience of comparison of this expression
with (1), we may put it in the form

Ta -1 )
Te '

Tag

e

' i
~1+“4— BAt (25)

where

At =t —1,.

There are, unfortunately, very few test data that
could serve to check the relations obtaired.

Becker and Kaye [5] have generalized the results
of their tests and those of Bjerklund and Kaye on
air heat transfer in the gap between cylinders, the
inner one of which rotated while the outer was at
rest. They found that under nonisothermal conditions,
with a heat flux directed from the inner cylinder to
the outer, Ta/Tag = 1-1,17, Calculation of the ratio
of critical Taylor numbers according to the data of
[5] (At = 30°, ry=1.24), with the aid of (1) and (25),
gives 1.02 and 1.085, respectively. Therefore to
check the theoretical relations we require experi-
mental investigations at large heat loads and with
various heat flux directions,

NOTATION

F~body force, referred to unit volume; j—inertial acceleration;
K = (8/\rq-dimensionless group; M~moment of momentum; P =

= f(ry, ) —dimensionless geometrical characteristic; Pr—Prandrl
number; q—heat load; rj, r, —radii of inner and outer cylinders,
resp%ctively; rm—;nean gap. r.adius; T=1/1;: 1 = r,/r; Ta =

= w "1y, = r)° 1/P—critical value of modified Taylor number
under nonisothermal conditions; Tay—the same under isothermal
conditions; At =1ty = t, ; t;—~temperature of inner cylinder surface;
t, —temperature of outer cylinder surface; u—circular velocity; p—
fluid density; w—angular velocity; w,—angualar velocity of inner
cylinder; w, —angular velocity of outer cylinder; w = wy/wy; Wf —
critical ratio of angular velocities.
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